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Abstract

Hydrodynamic models are useful tools for urban water management. Unfortunately, it
is still challenging to obtain accurate results and plausible uncertainty estimates when
using these models. In particular, with the currently applied statistical techniques, flow
predictions are usually overconfident and biased. In this study, we present a flexible5

and computationally efficient methodology (i) to obtain more reliable hydrological sim-
ulations in terms of coverage of validation data by the uncertainty bands and (ii) to
separate prediction uncertainty into its components. Our approach acknowledges that
urban drainage predictions are biased. This is mostly due to input errors and structural
deficits of the model. We address this issue by describing model bias in a Bayesian10

framework. The bias becomes an autoregressive term additional to white measurement
noise, the only error type accounted for in traditional uncertainty analysis in urban hy-
drology. To allow for bigger discrepancies during wet weather, we make the variance of
bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically,
we present a structured approach to select, among five variants, the optimal bias de-15

scription for a given urban or natural case study. We tested the methodology in a small
monitored stormwater system described by means of a parsimonious model. Our re-
sults clearly show that flow simulations are much more reliable when bias is accounted
for than when it is neglected. Furthermore, our probabilistic predictions can discrimi-
nate between three uncertainty contributions: parametric uncertainty, bias (due to input20

and structural errors), and measurement errors. In our case study, the best performing
bias description was the output-dependent bias using a log-sinh transformation of data
and model results. The limitations of the framework presented are some ambiguity due
to the subjective choice of priors for bias parameters and its inability to directly reduce
the causes of bias. More experience with the application of this framework will lead25

to a greater prior knowledge for a bias formulation. Furthermore, propagation of input
uncertainty and improvement to the model structure are expected to reduce the bias.
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1 Introduction

Mathematical simulation models play an important role in the design and assessment
of urban drainage systems. On the one hand, they are used to investigate the current
system, for example regarding the capacity for and likelihood of flooding. On the other
hand, engineers use them to predict the consequences of future changes of boundary5

conditions or control strategies (Gujer, 2008; Kleidorfer, 2009; Korving and Clemens,
2005). Traditionally, according to standards of good engineering practice, such models
were calibrated by adjusting in parameters in such a way as to allow predicted flows
to closely reflect field data. In recent years, it has been recognized that predictions of
urban drainage models are not of much practical use without an estimate of their uncer-10

tainty (Dotto et al., 2011; Kleidorfer, 2009; Korving and Clemens, 2005). Unfortunately,
there are so far no established methods available to assess prediction uncertainty in
sewer hydrology in a statistically satisfactory way (Freni et al., 2009b; Breinholt et al.,
2012).

Most studies in urban hydrology compute uncertainty intervals of sewer flows by sim-15

ply propagating model parameter uncertainty and adding independent measurement
errors to the output, often by means of Monte Carlo simulation (e.g. Dotto et al., 2011;
Freni et al., 2009b). However, an independent error term makes only sense if the ran-
dom measurement errors would be the dominating source of uncertainty. Additionally,
it would be desirable that a random realization of the error model results in a trajec-20

tory that is in agreement with observed data. Unfortunately, this is not the case with iid
errors.

In the context of design, operation and assessment of urban hydrosystems, it is im-
portant to obtain reliable predictions from a calibrated model (Sikorska et al., 2012).
This means that random draws from the model should have similar statistical proper-25

ties (such as variance or autocorrelation) as the data. Additionally, for reliable predic-
tions, the observed coverage of the simulated uncertainty bounds should match or ex-
ceed the nominal coverage. Ideally, this can be achieved by representing the dominant
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sources of uncertainty explicitly in the model. This could be done by considering un-
certainty in (i) model parameters, (ii) measured outputs, (iii) measured inputs and (iv)
the model structure and by propagating these uncertainties to the model output. In our
framework, the effect of uncertainty in model input and structural deficits on the output
are lumped together into the so-called “bias”. Both of these sources of uncertainty are5

often important, especially in urban hydrology. On the one hand, as all environmental
models, drainage models are only simplified mathematical abstractions of physical sys-
tems. As such, they can never exactly reproduce the true system response to rainfall.
On the other hand, precipitation can have high spatial and temporal variability, a phe-
nomenon inducing substantial errors in input observations and, consequently, in the10

output predictions (Sikorska et al., 2012; Renard et al., 2011; Kavetski et al., 2006).
While there have been some attempts to formulate a sound “total error analysis

framework” in natural hydrology (Kavetski et al., 2006; Vrugt et al., 2008; Reichert and
Mieleitner, 2009; Honti et al., 2013; Montanari and Koutsoyiannis, 2012), applications
in urban hydrology seem to be currently lacking. Instead, it is usually (often implicitly)15

assumed, first, that the model is correct and, second, that residuals, i.e. the differences
between model output and data, are only due to white measurement noise (Breinholt
et al., 2012; Dotto et al., 2011). Furthermore, these observation errors are consid-
ered to be identically (usually normally) and independently distributed (iid) around zero
(Willems, 2012). Unfortunately, these are very strong assumptions in urban hydrology,20

where processes are faster than in natural watersheds, spatial heterogeneity of precip-
itation may have a bigger effect (Willems et al., 2012), and rainfall-runoff can increase
by several orders of magnitude within a few minutes. This “flashy” reaction can be chal-
lenging to reproduce correctly in time and magnitude with current computer models
and precipitation measurements (Schellart et al., 2012). In addition, sewer flow data25

have a high temporal resolution of a few minutes and are usually more precise than
those of natural channels. These effects together usually lead to important systematic
discrepancies between model predictions and data (Reichert and Mieleitner, 2009). We
therefore agree with Reichert and Schuwirth (2012) and Breinholt et al. (2012) that (i)

5124

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 5121–5167, 2013

Improving
uncertainty

estimation in urban
hydrology

D. Del Giudice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

model bias is present in virtually every study and (ii) there is a great need to abandon
the traditional assumption of random measurement errors in urban drainage, as in most
other environmental modeling studies also. Instead, all uncertainty components must
be captured in a statistically rigorous manner to avoid overconfident flow predictions.

To better fulfill the statistical assumptions of homoskedasticity and normality of cal-5

ibration residuals, and so obtain more reliable predictions, it is a common practice in
hydrology to transform simulation results and output data (Schoups and Vrugt, 2010).
The Box-Cox transformation (Box and Cox, 1964) has indeed been successfully used
in several case studies, both rural (e.g. Frey et al., 2011; Honti et al., 2013; Reichert
and Mieleitner, 2009; Yang et al., 2007b,a; Sikorska et al., 2012) and urban (e.g. Dotto10

et al., 2011; Freni et al., 2009b; Breinholt et al., 2012). Admittedly, transformation sta-
bilizes the variance of the residual errors in the transformed space. Unfortunately, it
has almost no effect on the serial autocorrelation of residuals and thus cannot capture
model bias.

To account for systematic deviations of model results from field data, it seems15

promising to apply autoregressive error models that lump all uncertainty components
into a single process (Kuczera, 1983; Bates and Campbell, 2001; Yang et al., 2007b;
Schoups and Vrugt, 2010). Such models are not only relatively straightforward to apply,
but also often help to meet the underlying statistical assumptions. However, a disad-
vantage of such lumped error models is that only parameter uncertainty can be sep-20

arated form the total predictive uncertainty. To additionally separate bias from random
measurement errors, Kennedy and O’Hagan (2001), Higdon et al. (2005), Bayarri et al.
(2007) and others suggested using a Gaussian stochastic process to describe the
knowledge about the bias with an independent error term for observation error. This
approach has been applied to environmental modeling and linked to multi-objective25

model calibration by Reichert and Schuwirth (2012). Recently, a more complex input-
dependent description of bias has been applied successfully by Honti et al. (2013). In
their study, this solved the problem that the structural error was greater during rainy pe-
riods than during dry weather, a common situation in hydrology (Breinholt et al., 2012).
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Going in a different direction of error separation, Sikorska et al. (2012) combined the
lumped autoregressive error model with rainfall multipliers to separate the effect of input
uncertainty from (lumped, remaining) bias and flow measurement errors.

In summary, there are three major interrelated needs in (urban) hydrological mod-
eling: (i) to obtain reliable predictions, (ii) to disentangle prediction uncertainty into its5

components, and (iii) to fulfill the statistical assumptions behind model calibration. In
particular, need (iii) is necessary to fulfill requirements (i) and (ii) in a satisfying way.

To address the issues mentioned, here we adapt the framework of Kennedy and
O’Hagan (2001) as formulated by Reichert and Schuwirth (2012) to assess model
bias along with other uncertainty components. This makes it possible to provide reli-10

able predictions of (urban) hydrological models while meeting the underlying statistical
assumptions. At the same time, this approach takes into consideration different un-
certainty components, namely output measurement errors, parametric uncertainty and
the effect of structural deficits and input measurement errors on model output. With this
approach all uncertainties are described in the output. This does not allow separating15

among input errors and structural deficits. However, a statistical bias description is
simpler and less computationally intensive than approaches addressing the causes of
bias via mechanistic propagation of rainfall uncertainty (Renard et al., 2011), stochastic
time-dependent parameters (Reichert and Mieleitner, 2009), or by combining filtering
and data augmentation (Bulygina and Gupta, 2011).20

Although focused on urban settings, our methodology is also suitable in other con-
texts like natural watersheds, where generally processes occur on longer time scales
and output measurements are more uncertain. In this paper, we do not advocate an
ideal error model that fits every situation. In our view, although very desirable, such a
model might be unrealistic because watershed behaviors, measurement strategies and25

hydrodynamic models differ from case to case. Instead, we suggest a structured ap-
proach for finding the most suitable description of model bias for a given hydrosystem
and a given deterministic model.
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Specifically, we investigate different strategies to parameterize the bias description
by (i) making it input-dependent and (ii) making it output-dependent by applying two
different transformations. The distinguishing innovations of our study are:

i. A formal investigation of model bias in urban hydrology. This makes it possible to
obtain reliable uncertainty intervals of sewer flows, also because the underlying5

statistical assumptions have not been violated.

ii. An assessment of the importance of model bias by separating prediction uncer-
tainty into the individual contributions of bias, effect of model parameter uncer-
tainty and measurement errors.

iii. A systematic comparison of different bias formulations and transformations. This10

is highly relevant for both natural and urban hydrology because we can acquire
knowledge for potential future studies.

iv. An assessment of predictive uncertainties of flows for past (calibration) and future
(extrapolation) system states. We find that considering bias not only produces re-
liable prediction intervals. It also accounts for increasing uncertainty when flow15

predictions move from observed past into unknown future conditions. Further-
more, we discuss how the exploratory analysis of bias and monitoring data can
be used to improve the hydrodynamic model.

The remainder of this article is structured as follows: first, we present the statisti-
cal description of model bias and compare it to the classical approach. Second, we20

introduce two different bias formulations and two transformations, and describe how
we evaluate the performance of the resulting runoff predictions. Third, we test our ap-
proach on a high-quality dataset from a real-world stormwater system in Prague, Czech
Republic, and present the results obtained with the different error models. Fourth, we
discuss these results as well as advantages and limitations of our approach based25

on theoretical reflections and our practical experience. In addition, we suggest how to
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select the most appropriate error formulations for urban and also natural hydrological
studies and outline future research needs.

2 Methods

2.1 Likelihood function

To statistically estimate the predictive uncertainty of urban drainage models, we need5

a likelihood function (a.k.a. sampling model), f
(
yo|ξ,x

)
, which combines (in this par-

ticular case) a deterministic model (a.k.a. simulator), M, with a probabilistic error term.
f
(
yo|ξ,x

)
describes the joint probability density of observed system outcomes, yo,

given the model parameters, ξ, and external driving forces, x, such as precipitation.
The probability density, f

(
yo|ξ,x

)
, may have a frequentist (describes a limiting dis-10

tribution of a large number of observations) or a Bayesian (describes knowledge or
belief) interpretation. Only frequentist elements in a likelihood function can be empir-
ically tested. To formulate such a likelihood function, we need (i) a simulator of the
system with parameters θ , and (ii) a stochastic model of the errors with parameters ψ .
During calibration (a.k.a. parameter inference), the joint probability density of param-15

eter and model results, proportional to the product of the prior of the parameters and
the likelihood, f

(
yo|ξ,x

)
, is conditioned on the data to derive a joint posterior for both

deterministic model and error model parameters, i.e. ξ = (θ ,ψ ).
A generic likelihood function assuming a multivariate Gaussian distribution with co-

variance (or dispersion) matrix Σ(ψ ,x) of output transformed by a transformation g()20

can be written as:

f (yo | θ ,ψ ,x) =
(2π)−

n
2√

det(Σ(ψ ,x))
exp

(
−1

2

[
ỹo − ỹM(θ ,x)

]TΣ(ψ ,x)−1 [ỹo − ỹM(θ ,x)
])

n∏
i=1

dg
dy

(
yo,i ,ψ

)
, (1)
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where n is the number of observations, i.e. the dimension of yo, which could be, for in-
stance, a sewer flow time series. yM are the corresponding model predictions. The tilde
denotes transformed quantities, i.e. ỹ = g(y). Note that Eq. (1) assumes the residual
errors to have 0 as expected value.

Uncertainty analysis for predictions is usually preceded by model calibration during5

which the parameters of both the hydrological model, θ , and the error model,ψ , are in-
ferred. This parameter inference procedure requires that the statistical assumptions un-
derlying the likelihood function be approximately fulfilled. This means that the Bayesian
part of the likelihood function should correctly represent (conditional) knowledge/belief
of the analyst (given the model parameters). This assumption is not testable. In con-10

trast, frequentist assumptions can be tested by comparing empirical distributions with
model assumptions. In our error models, we will have a frequentist interpretation of the
observation error that can be tested, whereas the distributional assumption of the bias
cannot be tested. If frequentist assumptions are violated, options are (i) to improve the
structure of the deterministic model, (ii) to modify the distributional assumptions, or (iii)15

to improve the error model, e.g. by using a statistical (Bayesian) bias description.

i. In environmental modeling, improving the model structure, e.g. by a more detailed
description of relevant processes or by increasing the spatial resolution, can re-
duce, but not eliminate the bias. Natural systems are so complex that models
will always be a simplified abstraction of the physical reality, unable to describe20

natural phenomena without bias. In addition, increasing model complexity will in-
crease parametric uncertainty and computation time. Input errors are relevant
when dealing with highly variable forcing fields, as is the case for precipitation.
Having a denser point measurement network or combining different types of in-
put observations (e.g. from pluviometers, radar and microwave links) can reduce25

this uncertainty. However, for practical reasons, input errors cannot be completely
eliminated (Berne et al., 2004).

5129

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 5121–5167, 2013

Improving
uncertainty

estimation in urban
hydrology

D. Del Giudice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ii. A simple way of improving the distributional assumptions is applying a transforma-
tion to model results and data and applying the convenient distributional assump-
tions to the transformed values. This technique is commonly applied in hydrol-
ogy to reduce heteroscedasticity and skewness of (random observation) errors,
while simultaneously accounting for increasing uncertainty during high flow peri-5

ods (Wang et al., 2012; Breinholt et al., 2012). Alternatively, a similar effect can
be achieved through heteroscedastic error models with error variance dependent
on external forcings (Honti et al., 2013) or simulated outputs (Schoups and Vrugt,
2010).

iii. To account for difficult-to-reduce input and structural errors responsible for auto-10

correlated residuals, it has been suggested to describe prior knowledge of model
bias by means of a stochastic process and to update this knowledge through con-
ditioning with the data (Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon
et al., 2005; Bayarri et al., 2007).

To increase the reliability of our probabilistic predictions and the fulfillment of the un-15

derlying assumptions for a given model, we will focus here on combining the strategies
(ii) and (iii).

In the following paragraphs, we will consider nine different likelihood functions by sys-
tematically modifying (i) the dispersion matrix of the residuals Σ (Sects. 2.1.1 and 2.1.2)
and (ii) the transformation function g (Sect. 2.1.3). Three forms of parameterization of20

the bias process will be considered: neglection of bias (traditional error model with in-
dependent observation errors only), a stationary bias process, and an input-dependent
bias process. Regarding output transformation, we compare the identity (no transfor-
mation), the Box-Cox transformation, and a recently suggested log-sinh transformation
(references are given below).25

5130

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 5121–5167, 2013

Improving
uncertainty

estimation in urban
hydrology

D. Del Giudice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1.1 Independent error model

In urban hydrology, the most commonly used statistical technique to estimate predic-
tive uncertainty assumes an independent error model (Dotto et al., 2011; Freni et al.,
2009a; Breinholt et al., 2012). Besides the absence of serial correlation, this requires
residual errors identically distributed around zero.5

The transformed observed system output, Ỹ o, is modelled as the sum of a determin-
istic model output ỹM(x,θ ) and an error term representing the measurement noise of
the system response E

Ỹ o(x,θ ,ψ ) = ỹM(x,θ )+E(ψ ) , (2)

where variables in capitals are random, whereas those in lowercase are deterministic.10

Assuming independent identically distributed normal errors in the transformed space,
E follows a multivariate normal distribution with mean 0 and a diagonal covariance
matrix,

ΣE = σ2
E
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Assuming independent identically distributed normal errors in the transformed space, E fol-
lows a multivariate normal distribution with mean 0 and a diagonal covariance matrix,

ΣE =σ2
E1 . (3)

We then have ψ = σE , and the covariance matrix of Eq. (1) is given by Σ = ΣE . As E(ψ)
is interpreted to represent observation error, the distributional assumptions are testable through
residual analysis. Note that while in hydrology the observation and measurement errors are5

used as synonyms, in other environmental contexts observation errors can contain additional
sampling errors.

2.1.2 Autoregressive bias error model

In contrast to the independent error model, the autoregressive bias error model explicitly ac-
knowledges the fact that simulators cannot describe the “true” behaviour of a system. This has10

been originally suggested in the statistical literature (Craig et al., 2001; Kennedy and O’Hagan,
2001; Higdon et al., 2005; Bayarri et al., 2007) and later adapted to environmental modelling
(Reichert and Schuwirth, 2012).

Technically, model inadequacy (also called bias or discrepancy) is considered by augmenting
the independent error model with a bias term:15

Ỹo(x,θ,ψ) = ỹM (x,θ)+BM (x,ψ)+E(ψ) . (4)

On the one hand, this model bias BM can capture the effect of errors in input measurements
and structural limitations. On the other hand, it can also describe systematic output measure-
ment errors, e.g. from sensor failure, incorrectly calibrated devices or erroneously estimated
rating curves. In its simplest form, the bias is modelled as an autocorrelated stationary random
process (Reichert and Schuwirth, 2012). However, it can also have a more complex structure20

and, for instance, be input-dependent (Honti et al., 2013). Notice that, rigorously speaking, BM

11

. (3)

We then have ψ = σE , and the covariance matrix of Eq. (1) is given by Σ = ΣE . As E(ψ )15

is interpreted to represent observation error, the distributional assumptions are testable
through residual analysis. Note that while in hydrology the observation and measure-
ment errors are used as synonyms, in other environmental contexts observation errors
can contain additional sampling errors.

2.1.2 Autoregressive bias error model20

In contrast to the independent error model, the autoregressive bias error model ex-
plicitly acknowledges the fact that simulators cannot describe the “true” behaviour of
a system. This has been originally suggested in the statistical literature (Craig et al.,
2001; Kennedy and O’Hagan, 2001; Higdon et al., 2005; Bayarri et al., 2007) and later
adapted to environmental modelling (Reichert and Schuwirth, 2012).25
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Technically, model inadequacy (also called bias or discrepancy) is considered by
augmenting the independent error model with a bias term:

Ỹ o(x,θ ,ψ ) = ỹM(x,θ )+BM(x,ψ )+E(ψ ) . (4)

On the one hand, this model bias BM can capture the effect of errors in input measure-
ments and structural limitations. On the other hand, it can also describe systematic5

output measurement errors, e.g. from sensor failure, incorrectly calibrated devices or
erroneously estimated rating curves. In its simplest form, the bias is modelled as an
autocorrelated stationary random process (Reichert and Schuwirth, 2012). However, it
can also have a more complex structure and, for instance, be input-dependent (Honti
et al., 2013). Notice that, rigorously speaking, BM represents a bias-correction whereas10

the bias itself is its negative.
Conceptually, one difficulty is the identifiability problem between model and bias,

which is apparent in Eq. (4). As both cannot be observed separately, this issue can only
be solved by considering prior knowledge on the bias in parameter estimation. This re-
quires a Bayesian framework for inference and prior distributions that favour the small-15

est possible bias. Indeed, we desire output dynamics to be described as accurately
as possible by the simulator and only the remaining deviations by the bias. Note that
the distribution of the residuals, BM(x,ψ )+E(ψ ), is not testable due to the Bayesian
interpretation of BM(x,ψ ). However, when estimating both BM(x,ψ ) and E(ψ ), the
assumptions regarding the observation error, E(ψ ), can be tested by frequentist tests.20

Practically, the choice of an adequate bias formulation is challenging. On the one
hand, examples from urban hydrological applications are currently lacking. On the other
hand, the bias results from the complex interplay between the drainage system, the
simulator and the monitoring data. This is not straightforward to assess a priori. No-
tice that the autocorrelated bias and the random observation errors are usually well25

distinguished from each other by virtue of their distinct statistical properties.
In the following, we investigate four different bias formulations: (i) input and output-

independent (i.e., constant), (ii) output-dependent, (iii) input-dependent, (iv) input and
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output-dependent. The constant bias is modeled via a standard Ornstein-Uhlenbeck
(OU) process. The output-dependence is considered through transformation of mea-
sured and simulated data. The input-dependence uses a modified OU process, which
is perturbed by rainfall.

Input-independent bias5

The simplest bias formulation is a mean-reverting Ornstein-Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930), the discretization of which would be a fist-order au-
toregressive process (AR(1)) with iid noise. The OU process is a stationary Gauss-
Markov process with a long-term equilibrium value of zero and a constant variance,
either in the original or transformed space. The one-dimensional OU process BM is10

described by the stochastic differential equation

dBM(t) = −
BM(t)
τ

dt+

√
2
τ
σBct

dW (t) , (5)

where τ is the correlation time and σBct
is the asymptotic standard deviation of the ran-

dom fluctuations around the equilibrium. dW (t) is a Wiener (white noise) process which
is the same as standard Brownian motion. For an introduction on stochastic processes15

see, e.g., Iacus (2008); Henderson and Plaschko (2006); Kessler et al. (2012).
This stationary bias results in the likelihood function of Eq. (1) with covariance matrix

Σ = ΣE +ΣBM
with

ΣBM,i ,j (ψ ) = σ2
Bct

exp
(
−1
τ
|ti − tj |

)
. (6)

In contrast to the formulation given by Eq. (6), the covariance in the original formula-20

tion by Kennedy and O’Hagan (2001) had an exponent α for the term |ti−tj |. To guaran-
tee differentiability, this expondent is often chosen to be equal to two. For hydrological
applications we prefer an exponent of unity to be compatible with the OU process,

5133

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/hessd-10-5121-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 5121–5167, 2013

Improving
uncertainty

estimation in urban
hydrology

D. Del Giudice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

which can be assumed to be a simple description of underlying mechanisms leading to
a decay of correlation (Yang et al., 2007a; Sikorska et al., 2012). Indeed, such a covari-
ance structure makes it possible to transfer the autoregressive error models (Kuczera,
1983; Bates and Campbell, 2001; Yang et al., 2007b) to the bias description framework.

Input-dependent bias5

A more complex bias description considers input-dependency to mechanistically in-
crease the uncertainty of flow predictions during rainy periods. Following Honti et al.
(2013), we suggest an OU process whose variance grows quadratically with the pre-
cipitation intensity, x, shifted in time by a lag d . The equation for the rate of change of
the input-dependent bias is then given by:10

dBM(t) = −
BM(t)
τ

dt+

√
2
τ

(
σ2
Bct

+ (κx(t−d ))2
)

dW (t) , (7)

where κ is a scaling factor and d denotes the response time of the system to rainfall.
For an equidistant time discretization, with ti+1 − ti = ∆t, assuming that the lag is a
constant multiple of ∆t, d = δ∆t, and the input is constant between time-points, we
derive from Eq. (7) the recursion formula for the variance15

E
[
B2

M(ti )
]
= E

[
B2

M(ti−1)
]

exp
(
−2
τ
∆t

)
+
[
σ2
Bct

+
(
κxi−δ

)2
](

1−exp
(
−2
τ
∆t

))
. (8)

The parameters ψ of this bias are given by

ψ = (σBct
,τ,κ,d )T . (9)

The resulting bias covariance matrix, ΣBM
, is given by

ΣBM,i ,j (ψ ,x) = E
[
B2

M

(
min(ti ,tj )

)]
exp

(
−1
τ
|tj − ti |

)
. (10)20
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In comparison to the original bias formulation by Honti et al. (2013), we modified two
aspects. First, we consider the response time of the system by introducing a time lag of
the input, which was necessary due to the high frequency of monitoring data. Indeed,
instead of working with daily discharge data used in Honti et al. (2013), here we had
output observations every two minutes. Second, we omitted the fast bias component,5

which accounts for additional noise coming into action during the rainy timesteps. In
our experience, this component did not have a significant effect at this short time scale
and its elimination led to a greater simplicity and robustness of the error model.

2.1.3 Output transformation

In hydrological modeling, it is common practice to apply a transformation to account10

for augmented variance for large discharge. The two variance stabilization techniques
which are, in our view, most promising for urban drainage applications are: the Box-
Cox transformation (Box and Cox, 1964) and the log-sinh transformation (Wang et al.,
2012).

Box-Cox15

The Box-Cox transformation has been successfully used in many hydrological studies
to reduce the output-dependence of the residual variance in the transformed space
(e.g. Frey et al., 2011; Honti et al., 2013; Dotto et al., 2011; Reichert and Mieleitner,
2009; Yang et al., 2007b,a; Sikorska et al., 2012, 2013).

The one-parameter Box-Cox transformation can be written as:20

g(y) =

{
yλ−1
λ if λ 6= 0

log(y) if λ = 0
(11)

g−1(z) =

{
(λz+1)1/λ if λ 6= 0
exp(y) if λ = 0

(12)
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where g indicates the forward and g−1 the backward transformation. λ is a parameter
that determines how strong the transformation is. It is chosen from the interval [0,1],
with the extreme cases of 1 leading to the (shifted) identity transformation, 0 to a log
transformation. Profiting from the experience in the literature (Willems, 2012; Honti
et al., 2013; Yang et al., 2007b), we choose a value of λ = 0.35, which yields a moderate5

transformation that increases the variance for high discharges only to a degree that
does not decrease their weight for calibration too strongly. The behavior of the Box-
Cox transformation for the stormwater runoff in our study is shown in Fig. 1.

Log-sinh

The log-sinh transformation has recently shown very promising results for hydrologi-10

cal applications (Wang et al., 2012). In contrast to the original notation, we prefer a
reparameterized form with more intuitive parameters:

g(y) = β log
(

sinh
(α+ y
β

))
, g−1(z) =

(
arcsinh

(
exp(

y
β

)
)
− α
β

)
β , (13)

where α (originally a/b) and β (originally 1/b) are lower and upper reference outputs,15

respectively. For outputs much smaller than α, the scaling of the error (derivative of
g) is approximately constant, whereas for outputs larger than β, it is approximately
equal to unity. In our case study, we chose α to be the minimal discharge below which
the uncertainty does not further decrease and β to be the discharge above which
uncertainty does not significantly increase. The characteristics of the catchment and20

the monitoring equipment suggested a setting of α=5 L s−1 and β=100 L s−1. A graph
of the transformation function with these parameter values is provided in Fig. 1.

Both transformations are able to reduce the heteroscedasticity of residuals, which
represents the fact that flow meters and rating curves are more inaccurate during high
flows and systematic errors lead to a higher uncertainty during high flows. Another pos-25

itive characteristic is that these transformations make error distributions asymmetric,
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substantially reducing the proportion of negative flow predictions, which can otherwise
occur during error propagation.

2.2 Inference and predictions

The following steps are needed to calibrate a deterministic model M with a statistical
bias description and observation error and to analyze the resulting prediction uncertain-5

ties: (i) definition of the prior distribution of the parameters, (ii) obtaining the posterior
distribution with Bayesian inference, (iii) probabilistic predictions for the temporal points
(in the following called layout) used in calibration, (iv) probabilistic predictions for the
extrapolation period. Finally, one has to assess the quality of the predictions and ver-
ify the statistical assumptions. We highly recommended an exploratory analysis of the10

bias, which can help to improve the structure of the simulator.

2.2.1 Prior definition

First, one has to define the joint prior distribution of the parameters of the hydrological
model, θ , and of the error model, ψ . In particular, this requires an informative prior
of the covariance matrix of the flow measurements. Although a first guess can be ob-15

tained from manufacturer’s specifications, it is recommended to assess it separately
with redundant measurements (see Dürrenmatt et al., 2013). As stated in Sect. 2.1.2,
it is important that the prior of the bias reflect the desire to avoid model inadequacy
as much as possible. This is obtained by a probability density decreasing with increas-
ing values of σBct

and κ (e.g. an exponential distribution). This helps to reduce the20

identifiability problem between the deterministic model and the bias. For the prior for
σBct

, one could take into account that the maximum bias scatter is unlikely to be higher
than the observed discharge variability. On the other hand, the maximum value of κ
can hardly exceed the maximum discharge divided by the corresponding maximum
precipitation of a previously monitored storm event. Additionally, τ should represent25

the characteristic correlation length of the residuals and could be approximately set
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to 1/3 of the hydrograph recession time. More prior information may be available from
previous model applications to the same or a simlar hydrological system. Finally, the
parameters of the chosen transformation have to be specified.

We recognize that assigning priors for bias parameters might be challenging. There-
fore we suggest testing a posteriori the sensitivity of the updated parameter distribu-5

tions to the priors. We advise against using uniform improper priors for two reasons.
First, as discussed above, our ignorance about bias parameters is not total. Second,
as argued by Raiffa and Schlaifer (1961), if one lacks knowledge about ψ one should
also lack knowledge about ψ2, but no distribution exists that is uniform on both ψ and
ψ2 (Christensen et al., 2010).10

2.2.2 Bayesian inference

Second, the posterior distribution of the simulator and the error model parameters
f (θ ,ψ | yo,x) is calculated with the prior distribution f (θ ,ψ ) and the likelihood func-
tion according to Bayes’ theorem:

f (θ ,ψ | yo,x) ∝ f (θ ,ψ )f (yo | θ ,ψ ,x) . (14)15

Numerically, properties of the posterior distribution can be approximated based on a
sample drawn using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algo-
rithm. Details are given in Sect. 3.2.

2.2.3 Predictions in the calibration layout L1

Third, one has to compute posterior predictive distributions for the observations that20

have been used for parameter estimation. The experimental layout of this data set
(here: calibration layout), L1, specifies which output variables are observed, where
and when. Here, the model output at calibration layout L1 is given by the vector yL1 =
(yst1 , . . .,ystn1

), where ys denotes the discharge at the location, s, of the measurements

and ti , for i = 1, . . . ,n1, the time points of the measurements.25
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In order to separate different uncertainty components, we compute predictions from
(i) the simulator y

L1

M , which only contains uncertainty from hydrological model parame-

ters, (ii) our best knowledge about the system response g−1(ỹ
L1

M +B
L1

M ), which compre-
hends additional uncertainty from input errors and structural deficits, and (iii) observa-
tions of the system response, g−1(ỹ

L1

M +B
L1

M +EL1) which, in addition, includes random5

flow measurement errors (note that we mean here the application of the scalar func-
tion g−1 to all components of the vector specified as its argument). Usually, hydrological
“predictions” describe simulation results for time points or locations where we do not
have measurements. Here, consistent with Reichert and Schuwirth (2012) and Higdon
et al. (2005), “predictions” designate the generation of model outputs (with uncertainty10

bounds) in general.
To obtain probabilistic predictions for multivariate normal distributions involved in the

evaluation of these random variables, the reader is referred to Kollo and von Rosen
(2005) and Kendall et al. (1994). Taking as an example the posterior knowledge of
the true system output without observation error conditional on model parameters, the15

expected transformed values are given by

E
[
ỹ
L1

M +B
L1

M | Ỹ L1
o ,θ ,ψ

]
= ỹ

L1

M +Σ
B
L1
M

(
ΣEL1 +Σ

B
L1
M

)−1
·
(
ỹ
L1
o − ỹL1

M

)
(15)

and their covariance matrix by

Var
[
ỹ
L1

M +B
L1

M | Ỹ L1
o ,θ ,ψ

]
= Σ

B
L1
M

(
ΣEL1 +Σ

B
L1
M

)−1ΣEL1 . (16)

These equations are used to draw realizations from the bias-corrected output by propa-20

gating a large sample from the posterior distribution through the simulator y
L1

M , drawing

realizations of ỹ
L1

M +B
L1

M and ỹ
L1

M +B
L1

M +EL1 for each point of the sample, and trans-
forming these results back to the original observation scale by applying the inverse
transformation g−1. This leads to a sample that approximates the full posterior predic-
tive distribution. To visualize the best knowledge and uncertainty intervals of marginals25
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of this distribution, it is usually recommendable to compute sample quantile intervals of
the individual components (e.g., 0.025, 0.5, 0.975 quantiles).

Besides calculating the posterior predictive distribution, it is important to check the
assumptions of the likelihood function. As our posterior represents our knowledge of
system outcomes, bias and observation errors, of which not all have a frequentist inter-5

pretation, we cannot apply a frequentist test to the residuals of the deterministic model
at the best guess of the model parameters. Instead, we have to extract our knowledge
of the observation errors to perform a frequentist test. This makes it necessary to split
the residuals into bias and observation errors and to derive the posterior of the obser-
vation errors alone. A numerical sample of this posterior can be gained by substituting10

the sample for the random variable ỹ
L1

M +B
L1

M in

EL1 = ỹ
L1
o −

(
ỹ
L1

M (x,θ )+BL1
)
. (17)

In this equation ỹ
L1
o refers to the field data. The medians of the components of this

sample represent our best point estimates of observation errors that we will use to test
the statistical assumptions as described in Sect. 2.2.5.15

2.2.4 Predictions in the validation layout L2

Fourth, one computes posterior predictive distributions for the validation (or extrapola-
tion) layout, L2, where data are not available or not used for calibration. In our study, L2
denotes the location and the time points of the extrapolation range, and the associated
model output is given by yL2 = (ystn1+1

, . . .,ystn2
).20

A sample for layout L2 could be calculated similarly to the one for L1 by using the
Eqs. (35) and (36) of Reichert and Schuwirth (2012) instead of the Eqs. (15) and (16).
However, the specific form of our bias formulation as an Ornstein-Uhlenbeck process
(Eqs. 5 and 7) offers a computationally more efficient alternative. As the OU process
is a Gauss-Markov process, we can draw a realization iteratively by drawing the real-25

ization for the next time step at time tj from that of the previous time step at time tj−1
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from a normal distribution. The expected value and variance of the normal distribution
of the bias given the model parameters is given by

E
[
BL2

M,j | B
L2

M,j−1 = bj−1,θ ,ψ
]
= bj−1 ·exp

(
−∆t
τ

)
, (18)

Var
[
BL2

M,j | B
L2

M,j−1,θ ,ψ
]
=
(
σ2
Bct

+
(
κxj−d

)2
)
·
(

1−exp
(
−2

∆t
τ
))

. (19)5

The sample of the bias for L2 can be generated by drawing iteratively from these distri-
butions for all required values of j starting from the last result of each sample point from
layout L1. By calculating the results of the deterministic model and drawing from the

observation error distribution, samples for y
L2

M , g−1(ỹ
L2

M +B
L2

M ), and g−1(ỹ
L2

M +B
L2

M +EL2)
can be constructed similarly as for the layout L1.10

2.2.5 Performance analysis

Fifth, the quality of the predictions is evaluated by assessing (i) the coverage of predic-
tion for the validation layout and (ii) whether the statistical assumptions underlying the
error model are met for the calibration layout.

Checking the predictive capabilities15

The predictive capability of the model can be assessed by two metrics, the “reliability”
and the “sharpness” (Breinholt et al., 2012). The reliability measures what percentage
of the validation data are included in the 95 % credibility intervals of g−1(ỹM +BM +E).
When this percentage is larger than or equal to 95 %, the predictions are reliable. Note
that in general we expect this percentage to be larger than 95 % as our uncertainty20

bands describe our knowledge about future predictions. This combines lack of knowl-
edge of parameter values and bias with the uncertainty due to the observation error
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and thus is systematically more uncertain than the observation error alone. The limit-
ing case of an exact coverage is only expected to occur if parameter uncertainty and
bias is small compared to the observation error. In contrast, the sharpness measures
the average width of the 95 % credibility intervals. Ideally, we seek the narrowest reli-
able bands. Besides these two criteria, the Nash–Sutcliffe efficiency index (Nash and5

Sutcliffe, 1970) is used to evaluate goodness of fit of the deterministic model to the
data.

As a side note, it has been suggested to check the prediction performance of a model
by only examining the number of data points included in the prediction uncertainty inter-
vals resulting only from parameter uncertainty (Dotto et al., 2011). Unfortunately, this is10

not conclusive because the field observations are not realizations of the deterministic
model but of the model plus the errors.

Checking the underlying statistical assumptions

The underlying statistical assumption of the error model is usually verified by resid-
ual analysis. This, however, is only meaningful for frequentist quantities. In a Bayesian15

framework, probabilities express beliefs, which can differ from one data analyst to an-
other and thus cannot be tested. In our error model (Eq. 4), the observation error is
the frequentist part of the likelihood function and frequentist tests can thus only be
applied to this term. As outlined in Sect. 2.2.3, we can use the median of the poste-
rior of the observation error at layout L1 to do such a frequentist test. These posterior20

observation errors should be tested whether they are (i) normally distributed, (ii) have
constant variance and (iii) are not autocorrelated. As the observation errors may only
represent a small share of the residuals of the deterministic model, posterior predictive
analysis based on independent data, as outlined in the previous paragraph, remains
an important performance measure.25

As a side note, it is conceptually incorrect to check frequentist assumptions by us-
ing the full (Bayesian) posterior distribution (e.g., Renard et al., 2010). Using the full
posterior instead of the best point estimate of the observation errors adds additional
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uncertainty from the incomplete prior knowledge of parameter values. In our view, this
distorts the interpretation of frequentist tests.

2.2.6 Improving the simulator

Finally, after performance checking, one should evaluate the opportunity to improve the
simulator and/or the measurement design for the model’s input. Hints for improvement5

can be obtained by exploratory analysis of the bias, for example by investigating the
relation between its median and output variables or input. On the one hand, systematic
patterns in the relation of the bias to model input or output would suggest the presence
of model structural deficits that could be corrected. On the other hand, increasing vari-
ance of the bias with increasing discharge could be a sign of excessive uncertainty in10

rainfall data. This could be improved by more reliable rainfall information.

3 Material

To demonstrate the applicability and usefulness of our approach, we evaluate the per-
formance of nine different error models in a real-world urban drainage modeling study.
In the following we will briefly describe the case study and details on the numerical15

implementation of the bias framework.

3.1 Case study

We tested the uncertainty analysis techniques on a small urban catchment in Sadová,
Hostivice in the vicinity of Prague (CZ). The system has an area of 11.2 ha and is
drained by a separate sewer system. It is a residential area with an “Open Housing”20

land-use type and has an average slope of circa 2 %.
The monitoring data of rainfall and runoff were collected in summer 2010 (Bareš

et al., 2010). Flow was measured at the outlet of the stormwater system in a circular
PVC pipe with a diameter of 0.6 m. A PCM Nivus area-velocity flow meter was used
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to record water level and mean velocity every 2 min. These output data show that the
hydrosystem is extremely dynamic, with a response ranging approximately from 2 L s−1

during dry weather to 600 L s−1 during strong rainfall.
Rainfall intensities were measured with two tipping bucket rain gauges that were in-

stalled only a few hundred meters from the catchment (Fig. 2). These two input tempo-5

ral datasets have been aggregated to 2 min time steps based on the weighted average
distance from the watershed centroid.

For model calibration, we selected two periods with 6 major rainfall events. One on
27 August between 01:52 LT and 12:58, and the second in July between 22 July at
23:32 and 23 July at 19:00. For validation, a single period from 23 July at 19:02 to the10

next day at 07:00 was selected. The calibration and validation data of July 2010 are
illustrated in Fig. 5.

3.2 Model implementation

We modelled runoff in the stormwater system using the SWMM software (Rossman
and Supply, 2010). The model was set to a simple configuration, namely a nonlinear15

reservoir representing the catchment connected to a pipe with a constant groundwater
inflow. Lumped modeling is particularly appropriate when a study focuses on outlet
discharge and computation can be a limiting factor (Coutu et al., 2012). The parameters
that we inferred during calibration were the imperviousness, the width, the dry weather
inflow, the length of the conduit and the slope of the catchment.20

The procedure outlined in Sect. 2.2 to compute the posterior predictive distributions
was implemented in R (R Development Core Team). SWMM was called from R using
the shell command. For a simulation, an input file with parameters and rainfall series
was read and the modelled stormwater discharge was written to an output file. The
input file was iteratively modified to update the parameters by using awk (Aho et al.,25

1987). awk was also used to extract the runoff time series from the output file.
From a numerical viewpoint, we solved the “inverse problem” described in Sect. 2.2.2

by using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm
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(Hastings, 1970). Before sampling from f (θ ,ψ | yo,x), we obtained a suitable jump
distribution (a.k.a. transition function or proposal density) by using a stochastic adap-
tive technique to draw from the posterior (Haario et al., 2001). For better performance
we added a size-scaling step, which depends on the target acceptance rate. For our
inference problem, this algorithm proved to be more robust than others, such as Vihola5

(2012) and Haario et al. (2006). However, research on efficient techniques for posterior
sampling is evolving rapidly and other approaches could also be used. See Liang et al.
(2011) and Laloy and Vrugt (2012) for recent developments in Bayesian computation.

4 Results

In general, accounting for model bias produced substantially more reliable predictions10

than using simple error models. Simulations using simplistic error models generally
met the statistical assumptions much less, independent of the transformations applied.
In the following, we will first give details on the predictive performances of the different
error models and then show what can be learned from the distribution of the estimated
observation errors.15

4.1 Evaluating the performance of probabilistic sewer flow predictions

As expected, the different assumptions underlying the nine error models lead to differ-
ent credibility intervals for stormwater runoff at the monitoring point (Fig. 4 and Table 1).
Predictions did not exhibit considerable sensitivity to the prior for the bias (results not
shown).20

For our case study, the best error model clearly was the constant bias model with
log-sinh transformation (Fig. 5). It has a high reliability, sharpness and Nash-Sutcliffe
index. The worst error model was the iid with log-sinh transformation, which performed
very poorly in the extrapolation range, with less than 50 % validation data included in
the total uncertainty bands.25
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Although the deterministic model reproduced the measured discharge dynamics
well, the total uncertainty during strong rain events in the validation period is still rather
large. Indeed, as illustrated in Fig. 5, even the best performing error model has a 95 %
interquantile range up to ∼140 L s−1, which is about 20 % of the maximum runoff mod-
eled in the extrapolation phase.5

In general, we found that most of the error formulations with model bias produced
reliable predictions and around 95 % or more of validation data fell within the 95 %
prediction interval range for new observations (Table 1). In addition, the bias framework
successfully separated the total uncertainty into parametric uncertainty, effect of input
plus structural deficits, and observation errors (Figs. 4 and 5). All the autoregressive10

error models indicated that most of the predictive uncertainty is due to model bias.
Interestingly, uncertainty due to random measurement noise is generally so small that
it is not visible in the plots.

In contrast, all error models which ignore model bias generated overconfident pre-
dictions with too narrow uncertainty bands. This was almost independent of the trans-15

formation applied. As stated above, they also could not separate the total uncertainty
since input and structural errors were implicitly assumed to be non-existent and thus
did not give any information on the importance of the individual error contributions.

Besides providing reliable estimates of the total predictive uncertainty, a second ad-
vantage of the bias framework is that it takes into account the different knowledge about20

the calibration and validation layout. As shown in Fig. 4, the predictions obtained with
bias description for the calibration layout, to the left of the dotted line, included most of
the observations while being, at the same time, very narrow. This takes into account
that in the calibration range, where data are available, our knowledge on stormwater
runoff is rather accurate and precise. In contrast, for the extrapolation domain where25

no observations are available, the uncertainty intervals are much larger.
In addition, we found that the conditioning on the monitoring data become increas-

ingly the further the model predicts into the future. This gradually increases the uncer-
tainty in the transition phase as the prediction horizon moves from the past into the
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future. Again, this is not possible with the traditional error models. As they cannot dis-
tinguish between past and future information, their prediction intervals are equally wide
for both the calibration and validation layouts.

A third advantage of bias description is that it provides an estimate of the most prob-
able system response g−1(ỹM +BM), which is depicted by the dashed line in Fig. 4. In5

the calibration layout, it closely follows the observations, which are comparably precise
and therefore contain the best information on the state of the system. For the validation
layout, this information is lacking. However, instead of abruptly reverting to the simu-
lator, the transition is gradual because the autocorrelated bias carries the information
from the last monitoring data into the future. We found that the de-correlation typically10

takes a few correlation lengths (here circa 30–50 min).
As can be seen in Table 1 and Fig. 4, even though the uncertainty intervals are more

reliable when bias is considered, the deterministic model performs best when residual
autocorrelation and heteroscedasticity are not taken into account. This is not surprising
since maximizing the posterior with the simple iid error model with no transformation15

corresponds to minimizing the sum of the squares of the errors and therefore produces
the best fit.

Comparing the input-independent and dependent bias formulations, two important
points are observed. First, the constant bias description produced on average “sharper”
uncertainty bands than the input-dependent version. The latter, in particular, produced20

huge uncertainties during rain events and very narrow intervals during dry weather.
Second, as expressed in Table 1, the constant bias almost produced the same simu-
lator fit as the simple error model, whereas the input-dependent bias formulation per-
formed less satisfactorily.

The transformation created skewed predictive distributions and, as expected, in-25

creased the wet weather uncertainty in the “real” space. This substantially reduced
occurrence of negative predicted flows with the Box-Cox transformation, and avoided
them altogether with log-sinh. The most noticeable observation about transforma-
tion is that combining the input-dependent bias with the Box-Cox transformation we
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obtained the largest uncertainty bands and among the poorest deterministic model
performances.

4.2 Analysis of estimated observation errors

In general, the analysis of the measurement errors is consistent with the predictive
performance analysis. Again, the error model with a constant bias and the log-sinh5

transformation best fulfills the statistical assumptions (Fig. 6). The frequentist com-
ponent of the residuals (the estimate of the observation errors) is virtually normally
distributed, has an almost constant variance and no autocorrelation. Diagnostic plots
on E are only shown as “Supplement” since the magnitude of these errors, which are
extremely small compared to the bias, suggests that the usefulness of formal statistical10

tests can be questioned in this case.
In contrast, the residuals of the iid error models are heteroskedastic and heavily

autocorrelated and thus strongly violate the statistical assumptions. They are also sev-
eral orders of magnitude larger than those with bias description. Such huge residuals
clearly lose their interpretative significance as random measurement errors of the flow.15

Finally, besides frequentist analyses of the white measurement noise, one should
check what can be learned from an exploratory analysis of the model bias. Plotting the
model bias against flow data (Fig. 3) shows an almost constant scatter with only weak
trends. In general, we observed a negative bias in the intermediate flow range and a
positive bias during severe storms. While the first systematic deviation is caused by20

slightly overestimating the runoff in the decreasing limb of the hydrograph, the second
reveals that the model systematically underestimates the highest peak discharges (see
Fig. 5).
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5 Discussion

The outcomes of this study, in agreement with theoretical considerations, confirmed
that describing bias by means of a stochastic process produces much more reliable and
interpretable hydrological predictions than the overly-simplistic traditional error model.
Additionally, the bias error model naturally describes the increase in uncertainty of the5

system response when passing from the calibration to the extrapolation range. In the
following, we will interpret the results obtained for our system, assess the differences
among the proposed bias description formulations, analyze the dissimilarities between
natural and urban hydrology, and finally provide guidelines on how to describe model
discrepancies in future studies.10

5.1 Bias analysis in the case study

The analysis of the uncertainties in our stormwater system demonstrated that our parsi-
monious deterministic model captures most of the hydrograph dynamics. Nevertheless,
it produced partially biased simulations. By accounting for these systematic deviations
with the most plausible error model, we observed almost a constant variance of the15

estimated observation errors. Furthermore, this configuration displayed some negative
bias during intermediate rain events and positive bias with very high discharges. These
findings indicate that a part of the predictive uncertainty stems from imprecise precip-
itation measurements, which increases the scatter of the residuals. Another part of
prediction uncertainty, instead, stems from structural deficits due to oversimplification20

of the simulator, which produce systematic trends in the residuals.
If the study’s goal is to reduce prediction uncertainty, one should, after detecting

structural deficiencies, improve the model. This can be done by either selecting other
process formulations (see Reichert and Mieleitner, 2009) or increasing the model com-
plexity. In our case, analyzing how model discrepancies depend on the measured dis-25

charge gave us the necessary information to improve the simulator. Increasing the
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number of calibration parameters from preliminary simulations reduced a strong posi-
tive bias (results not shown) to some mild systematic trends (Fig. 3).

5.2 Comparison of different bias descriptions

In this paper we proposed 5 different descriptions of model inadequacy. The bias de-
scription where the variance quadratically increases with precipitation is the conceptu-5

ally most appealing form since it mechanistically accounts for higher uncertainty during
rainy periods. Furthermore, in contrast to the empirical output-dependence via data
transformation, input-dependence acknowledges that the rising limb of the hydrograph
is more uncertain than the recessive limb.

Notwithstanding its theoretical appeal, the input-dependent bias has several draw-10

backs. First, it has two parameters more than the constant bias, which potentially re-
duces the robustness of this approach. In particular, during estimation, the proportion-
ality constant κ tends to reach very high posterior values (see Supplement for priors
and posteriors) and, in this way, leads to inflated variances during rainfall and too small
variances during dry weather. Second, since we always assume a normal distribution of15

the bias, the input-dependent description frequently requires a transformation anyway
in order to avoid physically meaningless negative uncertainty bands. Third, linked to the
two previous considerations, the input and output dependent error model has the ten-
dency to include too many mechanisms to describe model inadequacy. This complex
representation reproduces data dynamics “excessively” well and therefore motivates20

the deterministic model to fit the observations less. Finally, if larger uncertainties dur-
ing storms are due to structural deficits rather than to erroneous input measurements,
a variance increasing with precipitation would be also conceptually suboptimal.

It is interesting to notice that the input-dependent error model never reverted back
to a constant bias (i.e. κ never calibrated to 0), even in cases where all performance25

indicators favored the simpler error description. This can be explained considering that
the input-dependent bias has a basic variance plus a variance induced by precipitation.
In our case, the posterior basic variance for the input-dependent bias was, irrespective
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of the transformation, smaller than for the constant bias. This is caused by three com-
bined phenomena: (i) an error distribution with smaller variance has generally higher
likelihood, (ii) our simulator could match the baseflow almost exactly, and (iii) a large
part of the calibration period had an output equal to the baseflow. Since the input-
dependent error model still had to account for big errors during wet weather, it did so5

by increasing the precipitation-induced error variance, producing sometimes too wide
uncertainty intervals for the future storm events.

5.3 Bias assessment in urban and natural hydrology

Interestingly, for Honti et al. (2013) the input-dependent Box-Cox transformed error
model produced the best predictions. This different outcome, however, is not necessar-10

ily in contrast with our findings. First, as mentioned in the introduction, different case
studies can display extremely dissimilar error properties. Our urban catchment had a
much stronger difference in the hydrologic response between dry and wet periods than
Honti et al.’s natural watershed, which additionally presented fewer points of constant
minimal discharge. Second, the formulation by Honti et al. (2013) presented an ad-15

ditional precipitation-dependent bias component, while neglecting the delay between
precipitation occurrence and uncertainty increase. Thirdly, in Honti et al. (2013) the
log-sinh transformation was not implemented, and comparing only the Box-Cox trans-
formed input-dependent and constant bias we also find that the first produces better
coverage of the validation data.20

Comparing urban to natural catchments, an important aspect is, first, that urban
hydrosystems react much more rapidly and strongly and therefore require much more
frequent measurements of the hydrologic response (typically at minute scale instead
of daily scale). Furthermore, the discharge in sewers can be ascertained with much
higher precision and accuracy than in the case of rivers. Indeed, in drainage conduits25

the area-velocity sensors can measure the velocity directly, without requiring a rating
curve, which is an additional source of uncertainty in streamflow observations (Sikorska
et al., 2013; Montanari and Di Baldassarre, 2013). The elevated temporal density and
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precision of the measurements, as discussed by Reichert and Mieleitner (2009), leads
to an even higher need to address model discrepancies explicitly.

Second, in natural watersheds the high flow can be associated with floodplain inun-
dations which dramatically increase the uncertainty of flow measurements. In sewer
systems, by contrast, the well defined geometry of the pipes and the reliable flow mea-5

surement devices lead to a much smaller increase in observation uncertainty with in-
creasing discharge. This situation underlines the advantage of a log-sinh transforma-
tion in urban hydrology instead of the traditional Box-Cox. Indeed, the former assumes
that residual scatter in high streamflow ranges is limited.

Regarding uncertainty estimation, it seems that a formulation where the standard10

deviation of the input-dependent bias component linearly increases with precipitation
is suboptimal for urban systems. Indeed, most urban water basins, especially those
only draining stormwater and having low groundwater infiltration, exhibit extremely high
contrasts between low and high flows. With such a strong dynamism and linear input
dependence, unnecessarily wide uncertainty intervals can be produced.15

5.4 Recommendations

As our results demonstrate, model deficiencies have to be considered in hydrological
predictions, especially when dealing with urbanized areas. This is in agreement with
many other studies (Breinholt et al., 2012; Yang et al., 2007b; Schoups and Vrugt,
2010; Reichert and Mieleitner, 2009). If the modeller is not interested in separating20

predictive uncertainty into its contributing sources because data collection or model
building processes are fixed, we suggest using a lumped autoregressive error model
(Bates and Campbell, 2001; Yang et al., 2007b; Schoups and Vrugt, 2010). Such for-
mulations are usually sufficient to reliably estimate total output uncertainty. However,
it is often useful to assess how far the prediction uncertainty can be reduced by mini-25

mizing a particular error source (Sikorska et al., 2012). In these cases, we recommend
applying our five-variant bias description in order to disentangle the effects of model
discrepancies and random measurement errors. In particular, we suggest starting with
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a constant log-sinh transformed bias and setting priors of the error model parameters
using the recommendations given in Sect. 2.2.1. This likelihood formulation is sim-
ple and robust and proved to perform extremely well in our case study. Then, if the
efficiency of this error description is unsatisfactory, the Box-Cox transformation and
eventually the input-dependent bias description in its three variants can be applied.5

Finally, we propose selecting among the error description providing the best validation
coverage with the narrowest bands and the most iid transformed observation errors,
and applying this likelihood formulation to subsequent predictions.

If the input-dependence is of particular interest though providing dubious predictions,
considering what we discussed above, we suggest adapting this dependence on pre-10

cipitation as a function of the systems dynamics. One possibility could be to modify
Eq. (7) and, instead of a linear increase of uncertainty with the precipitation, one could
adopt a power relationship with the exponent as calibration parameter.

6 Conclusions

In this study, we investigated different strategies for describing systematic errors in15

hydrological modeling. Although this methodology was primarily developed for urban
drainage studies, it is not only statistically sound, but also flexible. Therefore it is very
suitable for analyzing other similar input-driven systems such as natural catchments.
Our objective was, first, to obtain reliable flow predictions that take into account model
bias. Second, we set out to quantify the different error contributions. We adapted the20

Bayesian description of model discrepancy suggested by Craig et al. (2001); Kennedy
and O’Hagan (2001); Higdon et al. (2005); Bayarri et al. (2007); Reichert and Schuwirth
(2012) to urban hydrology, making the bias variance increase during wet weather in
five different ways. The best results were obtained by making the variance output-
dependent, specifically with a bias having a constant variance in a log-sinh transformed25

space. This consideration is based on residual analysis in the calibration period and
the coverage and width of the prediction intervals in the validation phase. From the
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experience gained in this modeling study and theoretical considerations, we conclude
that:

i. Due to input uncertainty, structural deficits, and (possibly) systematic errors in
flow measurements, urban hydrological simulations are biased. When using pre-
cise and high-frequency output measurements to calibrate and analyze the un-5

certainties of these simulators by means of traditional iid error models, we obtain
implausible predictions.

ii. We can obtain much sounder predictions and significantly improve the fulfillment
of the assumptions by adding a model discrepancy function to the classical error
model. Such a bias term should have a variance that increases during storm10

events as a function of rainfall and/or runoff. Finally, the results demonstrate that
random output observation errors are much smaller than uncertainty due to bias.

iii. In our study, a rather simple constant autoregressive bias with a log-sinh trans-
formation outperformed an input-dependent bias description. Although the latter
is conceptually superior, the simpler formulation appeared more suitable for sys-15

tems with alternating long low flow periods and short high discharge pulses, as
happens with urban drainage basins. Indeed, it is apparently less susceptible to
producing excessively wide error bands and suboptimal fit. Therefore it is the first
one that we suggest applying for urban hydrological uncertainty analysis, followed
by the other four recommended variants.20

iv. Although it generally outperforms the traditional error assumptions, we are aware
of the limitations of our approach. The presence of bias, to which we have to as-
sign a weight in the form of priors, inevitably introduces subjectivity in the uncer-
tainty analysis. Moreover, this statistical method can “only” describe the different
types of output uncertainties, but cannot address directly the causes of bias nor25

can it straightforwardly lead to an uncertainty reduction.
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v. Despite remaining challenges, our approach has further advantages besides pro-
viding separated and credible prediction intervals. First, a bias description can
be associated with a fully fledged uncertainty propagation framework, support-
ing bias reduction, to describe “remnant” errors. So far, this remaining bias due
to imperfect description of the uncertainty sources has been modeled as white5

noise. Second, the exploratory analysis of model bias, for example investigating
its dependence on the output, can provide valuable insight into whether it is domi-
nated by input uncertainty or inadequate model formulation. Third, this statistically
sound approach is computationally not more intensive than the classical methods.
It is even much cheaper than the mechanistic error propagation frameworks.10

vi. Open questions requiring further research include establishing how the bias de-
scription can be applied to quantify the structural errors of complex hydrodynamic
models with multiple outputs. Moreover, it is unclear how input errors can be sep-
arated from structural deficits as this requires a probabilistic formulation and prop-
agation through the simulator. A further challenge is that complex sewer models15

are prohibitively slow for many iterative simulations. This can be possibly over-
come by statistical approximations, such as emulators.

Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/10/5121/2013/
hessd-10-5121-2013-supplement.pdf.20
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Table 1. Prediction performance metrics for the different error models: iid untransformed er-
ror model (iidE), Box-Cox transformed (iidE.BC), and log-sinh transformed (iidE.ls), constant
untransformed bias (CtB), Box-Cox transformed (CtB.BC), and log-sinh transformed (CtB.ls),
input-dependent untransformed bias (IDB), Box-Cox transformed (IDB.BC), and log-sinh trans-
formed (IDB.ls). The criteria on the left represent the Nash-Sutcliffe index in calibration (NS.cal)
and validation (NS.val) phases in the non-transformed space, the percentage of validation data
points falling into 95 % prediction interval (Cover.val), and the bounds average width [L s−1] in
the extrapolation domain (Sharp.val).

iidE iidE.BC iidE.ls CtB CtB.BC CtB.ls IDB IDB.BC IDB.ls

NS.cal 0.947 0.924 0.921 0.897 0.921 0.872 0.855 0.824 0.809
NS.val 0.838 0.783 0.764 0.84 0.829 0.815 0.732 0.73 0.696
Cover.val 86.9 62.2 44.2 93.9 79.7 97.8 93.6 99.4 75
Sharp.val 40.3 22.6 18.7 66.9 27.9 54.1 76.1 179 60.5
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Fig. 1. Behavior of the Box-Cox (solid line) and log-sinh (dashed line) transformation as a function of
the output variable (e.g. discharge in l/s) with parameters used in this study.
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Fig. 1. Behavior of the Box-Cox (solid line) and log-sinh (dashed line) transformation as a
function of the output variable (e.g. discharge in L s−1) with parameters used in this study.
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Fig. 2. Aerial photo of our Sadová case study catchment. The map shows the layout of the
main stormwater conduits and the location of the rain gauges and the flow meter.
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Fig. 3. Median of model inadequacy versus transformed observed runoff for the calibration period shown
in Fig. 5. Results are shown for the best solution: the constant bias log-sinh transformed error model.
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Fig. 3. Median of model inadequacy versus transformed observed runoff for the calibration
period shown in Fig. 5. Results are shown for the best solution: the constant bias log-sinh
transformed error model.
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Fig. 4. 95% credibility intervals for flow predictions for transition phase obtained with different as-
sumptions on error distribution. The vertical dashed line divides the calibration layout (past) from the
validation layout (future). The solid line is the deterministic model output with the optimized parame-
ter set, whereas the dashed line is the bias-corrected output representing our best estimation of the true
system response. Observed output of the system is represented by dots, with the triangular ones not be-
ing used for calibration. Colors of the credibility intervals: deterministic model predictions (dark gray),
predictions of the real system output (intermediate), predictions of new observations (light gray). The
observation errors, being very small for this scale (<1 l/s), the last two uncertainty bands overlap and
only the intermediate gray is visible.

43

Fig. 4. 95 % credible intervals for flow predictions for transition phase obtained with different
assumptions on error distribution. The vertical dashed line divides the calibration layout (past)
from the validation layout (future). The solid line is the deterministic model output with the
optimized parameter set, whereas the dashed line is the bias-corrected output representing
our best estimation of the true system response. Observed output of the system is represented
by dots, with the triangular ones not being used for calibration. Colors of the credibility intervals:
deterministic model predictions (dark gray), predictions of the real system output (intermediate
gray), predictions of new observations (light gray). The observation errors, being very small for
this scale (<1 L s−1), the last two uncertainty bands overlap and only the intermediate gray is
visible.
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Fig. 5. Probabilistic runoff predictions for part of the calibration (left) and the full validation period
(right) with the constant bias log-sinh transformed error model. The input time series is shown on the
top. Color and symbol interpretation is the same as in Fig. 4. Additionally, validation data not included
in 95% credible intervals of new observations are marked in red.
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Fig. 5. Probabilistic runoff predictions for part of the calibration (left) and the full validation
period (right) with the constant bias log-sinh transformed error model. The input time series
is shown on the top. Color and symbol interpretation is the same as in Fig. 4. Additionally,
validation data not included in 95 % credible intervals of new observations are marked in red.
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Fig. 6. Time series of median of E, the part of residuals assumed to come from random observation
errors. The range illustrated is the same part of the calibration period as shown in Fig. 5. The ordinate
axis is in transformed flow units.
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